• Users Online: 34740
  • Home
  • Print this page
  • Email this page
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Subscribe Contacts Login 

 Table of Contents  
Year : 2022  |  Volume : 13  |  Issue : 3  |  Page : 139-144

Does carbapenem-resistant enterobacteriaceae infection drive venous thromboembolism in patients admitted to intensive care units receiving prophylactic anticoagulants?

1 Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
2 Department of Pharmaceutical Care, King Abdulaziz Medical City; King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
3 King Abdullah International Medical Research Center; Department of Basic Sciences, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia

Date of Submission08-Oct-2021
Date of Decision25-Oct-2021
Date of Acceptance11-Nov-2021
Date of Web Publication15-Sep-2022

Correspondence Address:
Prof. Fahad A S. Aleidan
Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Riyadh
Saudi Arabia
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/joah.joah_151_21

Rights and Permissions

BACKGROUND: Systemic infections are one of several risk factors leading to the development of inflammation and venous thromboembolism (VTE) formation. This study aimed to assess the risk factors associated with the development of VTE in patients admitted to the intensive care unit (ICU).
MATERIALS AND METHODS: A retrospective-matched case − control study of patients with VTE in the period between January 1, 2018, and December 31, 2019. We included all adult patients who stayed more than 2 days in ICU before the development of VTE.
RESULTS: Univariate and multivariate analyses uncovered three of six factors to have significant influence in the development of VTE in ICU patients: Carbapenem-resistant Enterobactereaceae (CRE) infections (odds ratio [OR] 2.95, 95% confidence interval (CI) 1.21–7.33, P = 0.010), length of ICU stay (OR 1.02, 95% CI 1.01–1.04, P = 0.011), and the sequential organ failure assessment score (OR 1.10, 95% CI 1.01–1.20, P = 0.031); all were found to be independent risk factors in the development of VTE.
CONCLUSION: Our findings suggest that, CRE infection is a strong trigger to the development of VTE in patients admitted to the ICU, and draw the attention of the treating clinicians to prioritize these infections in the management protocols to control infection-driven VTE in ICU patients.

Keywords: Carbapenem-resistant enterobactereaceae, infection, intensive care, prophylactic anticoagulants, venous thromboembolism

How to cite this article:
S. Aleidan FA, Albilal S, Alammari M, Al Sulaiman K, Alassiri M, Abdel Gadir AG. Does carbapenem-resistant enterobacteriaceae infection drive venous thromboembolism in patients admitted to intensive care units receiving prophylactic anticoagulants?. J Appl Hematol 2022;13:139-44

How to cite this URL:
S. Aleidan FA, Albilal S, Alammari M, Al Sulaiman K, Alassiri M, Abdel Gadir AG. Does carbapenem-resistant enterobacteriaceae infection drive venous thromboembolism in patients admitted to intensive care units receiving prophylactic anticoagulants?. J Appl Hematol [serial online] 2022 [cited 2023 Oct 4];13:139-44. Available from: https://www.jahjournal.org/text.asp?2022/13/3/139/356090

  Introduction Top

Venous thromboembolism (VTE), also known as deep-vein thrombosis, (DVT) is a condition in which a blood clot forms most often in the deep veins of the leg, groin or arm and travels in the venous circulation, lodging in the lungs (known as pulmonary embolism, [PE]). It is a serious condition that is usually associated with high rates of morbidity, mortality, and cost.[1] Three prothrombotic factors are recognized to contribute to underlie the development of VTE, the Virchow's triad: Venous stasis, endothelial damage, and a hypercoagulable state.[2] VTE, in general, has long been considered a disease that affects predominantly European populations, a misconception resulting from the paucity of epidemiological data from non-European countries.[3] It is now evident that VTE is prevalent across a number of different racial groups.[4]

This issue has become of interest in view of the observation that ethnicity and or race need to be considered not only when resorting to thromboprophylaxis but also when assessing the known risk factors for VTE.[5] In special patient groups, such as critically-ill patients, the risk of VTE is increased substantially, particularly in those patients who are admitted to the intensive care units (ICUs).[6],[7] Although ICU patients share similar general risk factors for VTE with other hospital patients: Immobilization, age, obesity, sepsis, pregnancy, past personal or familial history of VTE, they have additional risk factors associated with ICU admission including among others, infection, mechanical ventilation, (by decreasing venous return), and prolonged stay in the ICU.[8],[9] Acute systemic or localized infections increase the risk of thrombosis up to 20 times and are independent risk factors for VTE.[10],[11] Furthermore, the risk of infection associated with thrombosis is the highest when the infection is active or in the weeks shortly afterward. In addition, immobilization brings with it venous stasis, one of the three basic prothrombotic mechanisms of the Virchow's triad.[12],[13] In this respect, prophylactic doses of anticoagulants, whether unfractionated heparin (UFH) or low-molecular-weight-heparin were repeatedly shown to lower the risk of hospital-related life-threatening VTEs.[14],[15],[16] Again, the available data on the effectiveness of thromboprophylaxis in critically-ill patients have emerged largely from the European populations.[17],[18] In view of the scarcity of information on both VTE and thrombophylaxis in the Middle Eastern populations, further research is certainly needed to characterize all the aspects of VTE, particularly the risk factors associated with it. The current study was conducted to identify the risk factors of VTE among ICU patients receiving prophylactic anticoagulants.

  Materials and Methods Top

This retrospective, single-center observational study was performed between January 1, 2018 and December 31, 2019. All the patients who were included in the study were admitted to the ICUs of the King Abdulaziz Medical City (KAMC), Riyadh, Saudi Arabia and the patients' data were obtained from the BestCare® database, KAMC system. The collected data included the following demographic and clinical parameters: Age, sex, body mass index (BMI), comorbid diseases (history of cancer, hypertension, diabetes mellitus, pulmonary diseases, cardiovascular diseases, liver diseases and chronic kidney diseases), as well as the severity of the disease classification which was calculated using the Acute Physiology and Chronic Health Evaluation II (APACHE II) score, ranging from 0 to 71.[19] The sequential organ failure assessment (SOFA) score, which represents the severity of the disorder in any of the six vital organs of the body systems: Respiratory, coagulation, cardiovascular and circulatory, liver, central nervous system and renal, and was scored on a 0–4 scale.[20] In addition, the nutrition risk in the critically ill (NUTRIC) score was used to identify patients who will benefit from aggressive nutrition.[21] The following baseline laboratory data were obtained: Platelet count, serum creatinine, and hemoglobin. In addition, the following outcome data were also recorded: ICU length of stay (LOS), number of patients using mechanical ventilation, bleeding events, infection acquisition during the ICU stay and death. The patient inclusion criteria were: Age ≥18 years; the ICU stay for more than 2 days, patient on VTE prophylaxis (guideline-recommended thrombophylaxis) using either subcutaneous low molecular weight heparin or UFH. The exclusion criteria were: patients admitted to ICU due to VTE or VTE diagnosed within 24 h of ICU admission; patients receiving therapeutic doses of heparin or on oral anticoagulants during ICU stay; patients who died or discharged within 48 h after ICU admission. All patients who fulfilled our inclusion criteria during the study period were considered VTE study cases. The controls were patients without VTE events who were randomly selected in a ratio of 1:1 patient to controls and were matched for age (±2 years), sex, and the same ICU and period of admission. The Institutional Review Board (IRB) approval was obtained from the King Abdullah International Medical Research Center (KAIMRC), and informed consent was waived.

Statistical analysis

The analysis of data was performed using the Statistical Package for the Social Sciences (SPSS) software (IBM, NY, USA, version 26). All P values were two sided, and a value <0.05 was considered statistically significant. The Pearson's Chi-square test was used to compare the categorical variables. Normally distributed continuous variables were analyzed using the independent t-test and the Mann–Whitney U test was used to compare median of nonnormal distribution continuous variables and the diseases severity scores (APACHE II, SOFA and NUTRIC). Binary logistic regression was also used in the analysis. The univariate and multivariate analyses were employed to identify the risk factors for the development of VTE.

  Results Top

Two hundred and thirty-four patients were identified with VTE admitted to the ICUs at KAMC in the period between January 1, 2018, and December 31, 2019. Seventy-seven patients were excluded as they met one or more exclusion criteria and 157 patients were included in the final analysis [Figure 1]. The baseline characteristics of these patients are presented in [Table 1]. Overall, 51% of the patients are women, and the mean age of all participants was 60.8 ±17 years (range from 24 to 88 years) and the average BMI was 33.9 ± 5.2 kg/m2. There was no statistical difference between VTE cases and control group in age, sex, BMI, comorbidities, use of antiplatelets, or the anticoagulant prophylaxis received.
Figure 1: Flow chart of the study population

Click here to view
Table 1: Demographic characteristics of patients

Click here to view

There were significant differences between VTE patients and the control group in the APACHE II, SOFA, and NUTRIC scores; the medians and interquartile ranges were 22 (16–26) versus 18 (12–24, P = 0.001), 9 (6–11) versus 7 (4–9, P < 0.0001) and 5 (4–7) versus 4 (3–6, P = 0.004), respectively [Table 2]. Significantly larger number of VTE patients were on mechanical ventilation as compared to controls (79.9% vs. 64.3%, P = 0.003). Patients with VTE stayed longer days in ICU than patients in the control group (25.1 ± 23.8 vs. 17.1 ± 11.7 days, P < 0.0001). Significantly higher proportion of VTE patients acquired Carbapenem-resistant Enterobactereaceae (CRE) infections during their stay in the ICU and before the development of VTE (21.7% vs. 9.6%, P = 0.003). A total of 16 patients (5.7% vs. 4.4%, P = 0.608) had minor bleeding, but no major bleeding episodes were recorded. The mortality rate was higher in VTE patients compared to control group, 25.5% versus 8.3%, P < 0.0001 [Table 2].
Table 2: Assessment of disease severity, venous thromboembolism risk factors, and mortality

Click here to view

The results of the univariate and multivariate analyses are presented in [Table 3]. Three of six risk factors were found to have a significant influence in the development of VTE in ICU patients. CRE infections (odds ratio [OR] 2.95, 95% confidence interval [CI] 1.21–7.33, P = 0.010), ICU LOS (OR 1.02, 95% CI 1.01–1.04, P = 0.011) and SOFA score (OR 1.10, 95% CI 1.01–1.20, P = 0.031) were independent risk factors in the development of VTE.
Table 3: Univariate and multivariate logistic regression analysis of the risk factors for venous thromboembolism

Click here to view

  Discussion Top

Over the last few decades, evidence has been mounting that VTE is as prevalent in non-Europeans as in Europeans; however, little is known about VTE in former populations;[22] this includes the risk factors associated with the development of VTE.

The present study is a retrospective study carried out in ICU patients with VTE, receiving guideline-anticoagulant thromboprophylaxis; VTE is known to be a very frequent complication in critically ill patients and quite often with negative impact on patients' outcome.[10],[18],[23],[24],[25] These earlier studies agree that the use of anticoagulant thromboprophylaxis is associated with a significant reduction in the risk of VTE in these critically-ill patients. In the current study, we aimed to identify the risk factors for VTE among ICU Saudi patients receiving prophylactic anticoagulants. It is already well established that ICU patients, other than the general risk factors associated with the development of VTE, such as age, obesity, sepsis, immobilization, malignancy, history of thrombotic disease, have their own risk factors, some of which may compound the general risk factors for VTE and these include, sepsis, immobilization (resulting from sedation), mechanical ventilation, cardiorespiratory failure, and end-stage renal failure.[8],[9],[26],[27],[28]

There are wide disagreements among previous reports on the independent risk factors for VTE. The univariate and multivariate analysis of our data has shown that infection, longer stay in the ICU, and mechanical ventilation were the most significant independent risk factors for VTE. Zhang et al.[6] found that the use central venous catheter (P = 0.002, OR = 4.50), Caprini score (P = 0.012, OR = 1.20), and ICU LOS (P = 0.006, OR = 1.08) were independent risk factors related to the development of VTE in patients admitted to the ICU. On the other hand, Kaplan et al.[29] in their study of ICU patients with severe sepsis and septic shock identified the increased length of ICU stay as the only risk factor significantly associated with development of VTE. Shorr and Williams[30] in their earlier larger randomized controlled trial in critically ill patients with sepsis found that history of VTE was the only risk factor independently associated with the development of VTE (OR, 3.66, 95% CI 1.77–7.56, P = 0.005). Hong et al.[31] in their survey among critically ill patients with DVT of the lower extremity identified age, gender, and BMI as significant risk factors for DVT development (P < 0.05); ten of their patients (11%) developed DVT during their stay in the ICUs.

These wide disagreements on the independent risk factors significantly associated with the development of VTE is not unexpected as different studies vary widely in the inclusion criteria of their critically ill patients, their comorbidities, the clinical setting and last not least the ethnicity of their patients. Considerations should also take into account the disparity in the study design particularly sample size, whether the study is prospective or retrospective. It is no wonder; therefore, there are wide disagreements in the independent risk factors significantly associated with the development of VTE. These disagreements make it difficult to make meaningful comparisons between the findings of different published reports.

Nonetheless infection and/or sepsis seem to be the most frequent independent risk factor associated with the development of VTE in these published reports. In the current study, CRE infection was found to be the most frequent trigger for the development of VTE and after unconditional multivariate adjustment, it has also resulted in an increased the risk of VTE by almost 3-fold after unconditional multivariate adjustment. Similarly, in the American Health and Retirement nationwide Study, aiming to identify the most common trigger to the development of VTE in hospitalized elderly patients (n = 399) infection was also shown to be the most common reason for hospitalization for VTE and has also increased the risk for the development of VTE by 2.9-fold.[32]

The important question that needs to be addressed in this respect is about the link between infection and the development of thrombosis. Recently emerging information on the pathophysiological mechanisms of infection-driven thrombosis and VTE has come from in the recent account of Iba et al.,[9] who have proposed that microbial products trigger the production and release of inflammatory mediators called pathogen-associated molecular patterns and damage-associated molecular patterns during sepsis. Both products activate the coagulation system and trigger the formation of a thrombus. It was also suggested that the increased risk of PE, in particular, might be related to local inflammation in the infected area of the lung. This is compounded by the hypoxic lung environment leading to local vasoconstriction and activation of coagulation.[33] There is also the possibility that severe infection and the associated inflammatory process including the release of pro-inflammatory cytokines would result in activation of the coagulation system and localized thrombotic complications.[34]

The other independent risk factor that was significantly associated with the development of VTE was the SOFA score, which was originally developed to give objective quantisation of the degree of the severity of the disease and organ failure of vital body systems including coagulation in patients with sepsis.[20] In patients with sepsis-induced disseminated intravascular coagulation, Iba et al.[35] found that SOFA is a useful score in predicting outcomes including mortality. Additionally, The SOFA score has the added advantage of being relatively easy and is a routine component of patients admitted to ICU. In a recent study on the sepsis-induced hemostatic changes, positive correlation was demonstrated between D-dimer and SOFA score.[36] D-dimer is a fibrin degradation product and is a small protein fragment resulting from the breakdown of a fibrin clot (or thrombus). The D-dimer test is now routinely used in the first-line assessment of patients suspected of suffering VTE.[37]

One of the primary limitations of our study is its retrospective nature and limited sample size. A larger sample size could have validated better the various risk factors for the development of VTE. In addition, our study was conducted in a single centre and therefore the collected data are subject confounding that may influence our outcomes. A multicentre study with a larger sample size may be necessary to eliminate deviations in the results and to confirm the current findings.

  Conclusion Top

Our findings suggest that in patients admitted to the ICU, CRE infection is a strong trigger to the development of VTE, and draw the attention of the treating clinicians to prioritise these infections in the management protocols to control infection-driven VTE in ICU patients.

Ethical approval and consent to participation

The study was approved by the IRB, KAIMRC, King Saud bin Abdulaziz University for Health Sciences, National Guard Health Affairs and informed consent was waived. All procedures performed in the study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Availability of supporting data

The data used for this research are available from the corresponding author on reasonable request and subject to IRB guidelines.

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

Behravesh S, Hoang P, Nanda A, Wallace A, Sheth RA, Deipolyi AR, et al. Pathogenesis of thromboembolism and endovascular management. Thrombosis 2017;2017:3039713.  Back to cited text no. 1
Kumar, DR, Hanlin E, Glurich I, Mazza JJ, Yale SH. Virchow's contribution to the understanding of thrombosis and cellular biology. Clin Med Res 2010;8:168-72.  Back to cited text no. 2
Roberts LN, Patel RK, Arya R. Venous thromboembolism and ethnicity. Br J Haematol 2009;146:369-83.  Back to cited text no. 3
Patel RK, Arya R. Venous thromboembolism: Racial and ethnic influences. Therapy 2008;5:169-75.  Back to cited text no. 4
Blondon M, Harrington LB, Righini M, Boehlen F, Bounameaux H, Smith NL. Racial and ethnic differences in the risk of postpartum venous thromboembolism: A population-based, case-control study. J Hemostas Thromb 2014;12:2002-7.  Back to cited text no. 5
Zhang C, Zhang Z, Mi J, Wang X, Zou Y, Chen X, et al. The cumulative venous thromboembolism incidence and risk factors in intensive care patients receiving the guideline-recommended thromboprophylaxis. Medicine (Baltimore) 2019;98:e15833.  Back to cited text no. 6
Geerts WH, Bergqvist D, Pineo GF, Heit JA, Samama CM, Lassen MR, et al. Prevention of venous thromboembolism: American College of chest physicians evidence-based clinical practice guidelines (8th edition). Chest 2008;1336 Suppl: 381S-453.  Back to cited text no. 7
Minet C, Potton L, Bonadona A, Hamidfar-Roy R, Somohano CA, Lugosi M, et al. Venous thromboembolism in the ICU: Main characteristics, diagnosis and thromboprophylaxis. Crit Care 2015;19:287-95.  Back to cited text no. 8
Iba T, Nisio MD, Levy JH, Kitamura N, Thachil J. New criteria for sepsis-induced coagulopathy (SIC) following the revised sepsis definition: A retrospective analysis of a nationwide survey. BMJ Open 2017;7:e017046.  Back to cited text no. 9
Smeeth L, Cook C, Thomas S, Hall AJ, Hubbard R, Vallance P. Risk of deep vein thrombosis and pulmonary embolism after acute infection in a community setting. Lancet 2006;367:1075-9.  Back to cited text no. 10
Grainge MJ, West J, Card TR. Venous thromboembolism during active disease and remission in inflammatory bowel disease: A cohort study. Lancet 2010;375:657-63.  Back to cited text no. 11
Cervantes J, Rojas G. Virchow's Legacy: Deep vein thrombosis and pulmonary embolism. World J Surg 2005;29 Suppl 1:S30-4.  Back to cited text no. 12
Bhagat K, Moss R, Collier J, Vallance P. Endothelial “stunning” following a brief exposure to endotoxin: A mechanism to link infection and infarction? Cardiovasc Res 1996;32:822-9.  Back to cited text no. 13
Cohen AT, Davidson BL, Gallus AS, Lassen MR, Prins MH, Tomkowski W, et al. Efficacy and safety of fondaparinux for the prevention of venous thromboembolism in older acute medical patients: Randomised placebo controlled trial. BMJ 2006;332:325-9.  Back to cited text no. 14
Leizorovicz A, Cohen AT, Turpie AG, Olsson CG, Vaitkus PT, Goldhaber SZ, et al. Randomized, placebo-controlled trial of dalteparin for the prevention of venous thromboembolism in acutely ill medical patients. Circulation 2004;110:874-9.  Back to cited text no. 15
Samama MM, Cohen AT, Darmon JY, Desjardins L, Eldor A, Janbon C, et al. A comparison of enoxaparin with placebo for the prevention of venous thromboembolism in acutely ill medical patients. Prophylaxis in medical patients with enoxaparin study group. N Engl J Med 1999;341:793-800.  Back to cited text no. 16
Cook D, Meade M, Guyatt G, Walter S, Heels-Ansdell D, Warkentin TE, et al. Dalteparin versus unfractionated heparin in critically ill patients. N Engl J Med 2011;364:1305-14.  Back to cited text no. 17
Patel R, Cook DJ, Meade MO, Griffith LE, Mehta G, Rocker GM, et al. Burden of illness in venous thromboembolism in critical care: A multicenter observational study. J Crit Care 2005;20:341-7.  Back to cited text no. 18
Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHEII: A severity of disease classification system. Crit Care Med 1985;13:818-29.  Back to cited text no. 19
Vincent J-L, Moreno R, Takala J, Willatts S, De Mendonça A, Bruining H, et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure. Intensive Care Med 1996;22:707-10.  Back to cited text no. 20
Heyland D, Dhaliwal R, Jiang X, Day A. Identifying critically ill patients who benefit the most from nutrition therapy: The development and initial validation of a novel risk assessment tool. Crit Care 2011;15:R268.  Back to cited text no. 21
Barzilai-Birenboim S, Arad-Cohen N, Nirel N, Avrahami G, Harlev D, Gilad G, et al. Thrombophilia screening and thromboprophylaxis may benefit specific ethnic subgroups with paediatric acute lymphoblastic leukaemia. Br J Haematol 2019;184:994-8.  Back to cited text no. 22
Crowther MA, Cook DJ, Griffith LE, Devereaux PJ, Rabbat CC, Clarke FJ, et al. Deep venous thrombosis: Clinically silent in the intensive care unit. J Crit Care 2005;20:334-40.  Back to cited text no. 23
Cook D, Crowther M, Meade M, Rabbat C, Griffith L, Schiff D, et al. Deep venous thrombosis in medical-surgical critically ill patients: Prevalence, incidence, and risk factors. Crit Care Med 2005;33:1565-71.  Back to cited text no. 24
McLeod AG, Geerts W. Venous thromboembolism prophylaxis in critically ill patients. Crit Care Clin 2011;27:765-80.  Back to cited text no. 25
Schmidt, M, Horvath-Puho E, Thomsen RW, Smeeth L, Sørensen HT. Acute infections and venous thromboembolism. J Int Med 2012;271:608-18.  Back to cited text no. 26
Grimnes G, Isaksen T, Vladimir Tichelaar YIG, Braekkan SK, Hansen JB. Acute infection as a trigger for incident venous thromboembolism: Results from a population-based case-crossover study. Res Pract Thromb Hemostas 2018;2:85-92.  Back to cited text no. 27
Schultz MJ, Haitsma JJ, Zhang H, Slutsky AS. Pulmonary coagulopathy as a new target in therapeutic studies of acute lung injury or pneumonia a review. Crit Care Med 2006;34:871-7.  Back to cited text no. 28
Kaplan D, Casper TC, Elliott CG, Men S, Pendleton RC, Kraiss LW, et al. VTE Incidence and risk factors in patients with severe sepsis and septic shock. Chest 2015;148:1224-30.  Back to cited text no. 29
Shorr AF, Williams MD. Venous thromboembolism in critically ill patients. Observations from a randomized trial in sepsis. Thromb Haemost 2009;101:139-44.  Back to cited text no. 30
Hong KC, Kim H, Kim JY, Kwak KS, Cho OM, Cha HY, et al. Risk factors and incidence of deep vein thrombosis in lower extremities among critically ill patients. J Clin Nurs 2012;21:1840-6.  Back to cited text no. 31
Rogers MA, Levine DA, Blumberg N, Flanders SA, Chopra V, Langa KM. Triggers of hospitalization for venous thromboembolism. Circulation 2012;125:2092-9.  Back to cited text no. 32
Marshall BE, Hanson CW, Frasch F, Marshall C. Role of hypoxic pulmonary vasoconstriction in pulmonary gas exchange and blood flow distribution. 2. Pathophysiology. Intensive Care Med 1994;20:379-89.  Back to cited text no. 33
Levi M, van der Poll T, Schultz M. Infection and inflammation as risk factors for thrombosis and atherosclerosis. Semin Thromb Hemost 2012;38:506-14.  Back to cited text no. 34
Iba T, Arakawa M, Mochizuki K. Usefulness of measuring changes in SOFA score for the prediction of 28-day mortality in patients with sepsis-associated disseminated intravascular coagulation. Clin Appl Thromb Hemost 2019;25:1-6.  Back to cited text no. 35
Nadya Giri S, Aman A, Hanafie A. Hemostasis changes and its relationship with SOFA score in sepsis patients. Bali Med J 2019;8:496-500.  Back to cited text no. 36
Lippi G, Bonfanti L, Saccenti C, Cervellin G. Causes of elevated D-dimer in patients admitted to a large urban emergency department. Eur J Intern Med 2014;25:45-8.  Back to cited text no. 37


  [Figure 1]

  [Table 1], [Table 2], [Table 3]


Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Access Statistics
Email Alert *
Add to My List *
* Registration required (free)

  In this article
Materials and Me...
Article Figures
Article Tables

 Article Access Statistics
    PDF Downloaded247    
    Comments [Add]    

Recommend this journal